Энергетический переход как новый вызов мировой нефтегазовой отрасли
Аннотация. В статье рассмотрены вопросы перехода человечества к энергетике будущего, получившего название «энергетического перехода» – Energy Transition (или энергетической трансформации – Global Energy Transformation). Рассмотрены основные концепции, постулаты, сценарии и дорожные карты, направленные на обеспечение такого перехода в глобальном масштабе, показаны его возможные результаты: объёмы и структура глобального энергопотребления, динамика спроса на нефть и природный газ. Сделаны выводы, что рассмотренные тенденции и новации необходимо учитывать и Российской Федерации, тем более, что для её газовой промышленности энергетический переход открывает дополнительные возможности.
Ключевые слова: энергетический переход, технологии, инновации, энергопотребление, энергоэффективность, ВИЭ, нефть, природный газ, уголь, электроэнергетика.
Среди различных глобальных вызовов, с которыми столкнулась мировая энергетика в начале XXI века, особое значение своей комплексностью и многогранностью имеет так называемый энергетический переход – Energy Transition (или энергетическая трансформация – Global Energy Transformation).
Немецкий термин «Energiewende», который можно перевести как «энергетический переход», «энергетический поворот», «энергетическая революция» в значении изменения всей глобальной энергетики, впервые появился в 1980 г. как название одной из публикаций немецкого научно-исследовательского Института Прикладной Экологии (Öko-Institut). К началу 2000-х гг. его значение качественно изменилось, и в настоящее время он стал своеобразным символом грядущих перемен в глобальной энергетике – перехода человечества к экологически чистой энергетике (и экономике в целом) в целях устойчивого развития и предотвращения негативных изменений климата нашей планеты.
Обусловленный растущей обеспокоенностью общественности проблемами изменения климата, энергетический переход нацелен на решение климатической проблемы путём отказа от углеводородного топлива – угля, нефти и природного газа, и перехода к малоуглеродной и безуглеродной энергетике2, поскольку потребление и производство энергии в настоящее время составляют около двух третей глобальных выбросов парниковых газов [1].
Значимость проблемы усугубляется прогнозируемой динамикой развития энергопотребления, обусловленной ростом населения (по оценкам ООН, до почти 10 млрд. чел. к 2050 г.) и экономики (по данным PwC, глобальный ВВП почти утроится к этому году) [2].
В настоящее время в международных научно-аналитических и экспертных кругах рассматривается целый ряд различных концепций, постулатов, сценариев и дорожных карт, направленных на обеспечение такого перехода в глобальном масштабе. Наиболее известны из них такие, как:
- постулаты IRENA «Преобразование глобальной энергетической системы: дорожная карта до 2050 г.» (Global energy transformation: A roadmap to 2050) – издания 2018 и 2019 гг.;
- инициатива Всемирного экономического форума по содействию эффективному энергетическому переходу (World Economic Forum Fostering Effective Energy Transition initiative);
- концепция энергетического перехода международного сертификационного и классификационного общества DNV GL;
- Сценарий устойчивого развития МЭА и др.
Общим для всех этих исследований является то, что энергетический переход трактуется как комплекс инновационных мероприятий в ходе индустриальной трансформации всего общества; как процесс, определяющий средне- и долгосрочную эволюцию энергетических систем на базе значительного расширение применения ВИЭ и соответствующего сокращения использования ископаемого топлива, прежде всего угля и нефти, при одновременном существенном росте эффективности использования энергоресурсов/энергии по всей цепочке от производства до конечного потребления.
Основными задачами энергетического перехода в трактовке этих исследований являются: стабилизация глобальных выбросов парниковых газов, удовлетворение будущего спроса на энергию и расширение доступа населения к надёжной чистой электроэнергии.
Кроме того, как отмечается в уже упомянутом исследовании IRENA (Global Energy Transformation: A roadmap to 2050. 2018), такой подход является более выгодным с точки зрения экономики, социума и окружающей среды, нежели подход, основанный на текущих планах и политиках. Однако глобальная энергетическая система должна претерпеть существенное преобразование — трансформироваться из системы, повсеместно основанной на ископаемом топливе, в систему, повышающую эффективность и основанную на возобновляемой энергии. Такое преобразование глобальной энергетической системы, считающееся апогеем «энергетической революции», которая уже полным ходом идёт во многих странах и регионах, может создать более процветающий и всеобъемлющий мир [3].
Причём, как подчёркивается в исследованиях Всемирного экономического форума (ВЭФ), этот переход должен состояться без нарушения баланса «энергетического треугольника»: безопасность и доступ; экологическая устойчивость; экономическое развитие и рост [2].
Хорошей иллюстрацией такого подхода к решению климатических проблем является разработанный МЭА в 2017 г. климат ориентированный сценарий развития мировой энергетики, обеспечивающий ограничение будущего глобального повышения температуры на поверхности Земли до 2°C к 2100 г. – 2°C Scenario (или 2DS) (рис. 1 и 2).
Источник: [4]. Рис. 1. Динамика глобального ВВП, спроса на первичные энергоресурсы и выбросов углекислого газа
Источник: [4]. Рис. 2. Глобальный спрос на первичные энергоресурсы, 2014 — 2060 гг.
Следует также отметить, что энергетический переход, то есть переход к принципиально иной энергетике – энергетике будущего – (а сейчас это, прежде всего, политическая цель) стал возможен в результате целого ряда технологических инноваций, достигнутых в начале XXI века в энергетическом секторе мировой экономики.
В области производства энергии – это, прежде всего, солнечная фотовольтаика, масштабное использование энергии ветра, первые достижения в разработке промышленных накопителей энергии, эффективная добыча нетрадиционных ресурсов нефти и газа. В сфере энергопотребления – развитие электрических транспортных средств и рост энергоэффективности. И там, и там – достижения 4-й промышленной революции: активное внедрение киберфизических систем, автоматизации и роботизации производственных процессов, развитие «Интернета вещей»» (IoT) и цифровых технологий.
В то же время отказ от углеводородной энергетики – это процесс, растянутый во времени и идущий неравномерно. Он обусловлен эволюцией технологий, с одной стороны, и необходимостью достижения климатических целей – с другой. Основной тренд очевиден, однако остаётся неопределённость в темпах изменений [5].
О проблеме неопределённости при рассмотрении возможной картины будущего глобальной энергетики хотелось бы сказать отдельно. Конечно же, при долгосрочном прогнозировании экономики и энергетики неопределённость присутствовала всегда, оказывая существенное воздействие на динамику всех основных групп факторов, определяющих объём и структуру перспективного энергопотребления (рис. 3). Но события последнего времени повысили её степень. Свой вклад в этот рост неопределённости также вносит целый ряд относительно новых факторов, таких как глобализация и геополитика, взрывное развитие науки и технологий, в том числе открытие новых источников энергетических ресурсов, демографические процессы и резкий рост социального неравенства, социальные революции и войны. Ситуация усугубляется складывающимся профицитом энергоресурсов [7]. Но особое место в ряду этих факторов принадлежит глобальному потеплению, которое и стало основной движущей силой концепции энергетического перехода.
Источник: на основе [6]. Рис. 3. Некоторые базовые взаимосвязи экономики и энергетики
Эта неопределённость побуждает ведущие международные и национальные аналитические центры с одной стороны строить множество различных сценариев, охватывающих, по сути, практически все возможные варианты развития ситуации, а с другой – заявлять, что их прогнозы – это, в общем-то, и не прогнозы, не предсказания того, что может произойти. Это всего лишь исследование тех путей, по которым мир может развиваться при соблюдении определённых условий, и тех действий, которые могут привести к такому развитию событий, это – всего лишь основа для размышлений о будущем глобальной энергетики [8]. В полной мере сказанное относится и к концепции энергетического перехода.
В результате в долгосрочных прогнозах развития мировой энергетики, разрабатываемых этими центрами в последние годы, оценки и тенденции глобального спроса на энергию и потребления углеводородов (нефти и природного газа) зачастую прямо противоположные.
Так, в базовом сценарии последнего прогноза МЭА (World Energy Outlook – WEO-2018) – Сценарии новой политики – рост мирового спроса на энергоресурсы, в том числе на нефть и газ, замедляется, но не достигает пика до 2040 г.
В 2040 г. спрос на нефть, без учёта жидкого биотоплива, составляет 106,3 млн. барр./сут. или 4 894 млн. т н.э., что на 10,% больше, чем в 2017 г., а на природный газ – 4 436 млн. т н.э. (рост почти на 43%). Суммарно же нефть и газ обеспечат почти 53% мирового энергопотребления [8].
Напротив, в новом для МЭА Сценарии устойчивого развития, который идеологически близок концепции энергетического перехода и предусматривает комплексную стратегию реализации ключевых, связанных с энергетикой, элементов повестки дня ООН в области устойчивого развития3, пик спроса на нефть достигается уже к 2020 г. на уровне 97 млн. барр./сут. А к 2030 г. достигается как пик спроса на газ (4318 млрд. куб. м), так и пик суммарного энергопотребления на уровне 13 820 млн. т н.э. Соответственно, в 2040 г. на нефть и газ будет приходиться только 48% мирового энергопотребления [8].
Продолжение быстрого роста мирового потребления нефти и газа в период до 2040 г. прогнозируется и Управлением энергетической информации США [9]. В его последнем IEO-2018 к 2040 г. глобальный спрос на нефть составит порядка 229 квадриллионов британских тепловых единиц (БТЕ), или 31% всего мирового энергопотребления, а природного газа – 182 квадриллиона БТЕ или почти 25% (рис. 4).
Оценки Секретариата ОПЕК (World Oil Outlook 2018) близки к оценкам базового сценария последнего прогноза МЭА. Они также исходят из того, что мировой рост спроса на нефть и природный газ в перспективе будет осуществляться замедляющимися темпами и составят в 2040 г., соответственно, 111,7 млн. барр./сут., или 27,8% от мирового потребления первичных энергоресурсов, и 91,3 млн. барр. н.э./сут., или 25,0% [10].
Источник: [9]. Рис. 4. Прогноз динамики мирового потребления первичных энергоресурсов, квадриллионов британских тепловых единиц
В прогнозе ВР Energy Outlook 2019 рассматривается целый ряд сценариев: базовый – Сценарий эволюционного перехода (Evolving transition scenario) и альтернативные – Сценарий быстрого перехода, «Больше энергии», «Меньше углерода», «Меньше глобализации», «Запрет одноразовых пластиков», «Более значительные реформы» и др. Соответственно, спрос на нефть в этом прогнозе оценивается на уровне 2040 г., в зависимости от сценария, от 80 млн. барр./сут. (23% от глобального энергопотребления в Сценарии быстрого перехода), до 108 млн. барр./сут. (27,2%) в базовом Сценарии эволюционного перехода, и до 130 млн. барр./сут. в Сценарии «Больше энергии». Спрос на природный газ варьирует от 4343 млн. т н.э. в Сценарии быстрого перехода (26%), до 4617 млн. т н.э. в Сценарии эволюционного перехода (26%) [11].
В прогностических исследованиях, выполняемых аналитическими структурами, ориентирующимися на устойчивое развитие, безусловное исполнение целевых установок Парижского соглашения по климату и возобновляемые источники энергии, заложены существенно более высокие темпы перехода к мало- и безуглеродной энергетике – именно такие, которые и обеспечивают реализацию концепции энергетического перехода.
При этом многие эксперты, даже из среды идеологов и приверженцев энергетического перехода, уверены, что в среднесрочной перспективе в качестве альтернативного варианта – «переходного источника энергии» (bridging energy resource) – можно рассматривать вопрос увеличения использования природного газа, поскольку газ, несмотря на его углеводородную природу, является относительно чистым источником энергии4 и позволяет найти оптимальное решение триединой задачи: удовлетворить растущий глобальный спрос на энергию и обеспечить сокращение выбросов как углекислого газа (климатическая задача), так и других вредных и загрязняющих атмосферу веществ (улучшение качества атмосферного воздуха).
Что касается более отдалённой перспективы, то подобную роль природный газ может играть только в сочетании с набором технологий, обеспечивающих улавливание, утилизацию и хранение/захоронение двуокиси углерода [13].
Так, в представленном компанией DNV GL 10 сентября 2018 г. в Лондоне прогностическом исследовании «Energy Transition Outlook 2018. A global and regional forecast to 2050» [14] отмечается, что достижения в области энергоэффективности и использования ВИЭ позволяют предвидеть большие изменения и в объёмах глобального спроса на первичную энергию, и в её структуре. В частности, суммарное потребление первичных энергоресурсов достигнет своего пика (15 809 млн. т н.э.) уже 2032 г., а конечное – в 2035 г. (11 224 млн. т н.э.). К 2050 г. эти объёмы снизятся, соответственно, до 13 994 и 10 746 млн. т н.э. При этом пик спроса на нефть (4 033 млн. т н.э. или 91,2 млн.барр./сут.) будет достигнут уже в 2023 г., после чего потребление нефти начнёт снижаться и составит в 2050 г. всего 2 052 млн. т н.э. (46,4 млн.барр./сут.). Тем самым доля нефти в глобальном потреблении первичных энергоресурсов составит всего 15%. Спрос на природный газ достигнет пика в 2034 г. (186 EJ в год), после чего начнёт постепенно снижаться. В результате доля газа в глобальном энергопотреблении, достигнув пика в 28% в середине 2030-х гг., снизится к 2050 г. до 25%. А суммарно на нефть, уголь и природный газ в 2050 г. будет приходиться только половина потребляемой человечеством энергии (рис. 5).
Источник: [14]. Рис. 5. Динамика мирового потребления первичных энергоресурсов при реализации концепции энергетического перехода (версия DNV GL)
Ещё более амбиционные цели ставятся Агентством IRENA в вышедшей в 2018 г. работе «Преобразование глобальной энергетической системы: дорожная карта до 2050 г.» [3]: увеличение доли ВИЭ в суммарном потреблении первичных энергоресурсов к 2050 г. до 66% (в том числе в электрогенерации – до 85%) при снижении самого энергопотребления до уровня меньшего, чем был в 2015 г.5 Соответственно, снижаются и объёмы потребления нефти (до примерно 24 млн. барр./сут.) и природного газа, пик спроса ожидается примерно в 2027 г. Тем не менее, природный газ останется крупнейшим источником ископаемого топлива и в 2050 г.
В издании 2019 г. Агентство IRENA показывает среднегодовые объёмы потребления ископаемых видов топлива в 2016-2050 гг. Они таковы: нефти – всего 22 млн.барр./сут. против 95 млн. барр./сут. в 2010-2017 гг., природного газа – 2250 против 3752 млрд. куб. м, и угля – 713 млн.т в угольном эквиваленте против 5357 млн. т, соответственно [15].
Существенно меняется в концепции энергетического перехода роль и сущность основных акторов нефтегазовой отрасли – нефтегазовых компаний. Глобальный энергетический переход ставит перед ними уникальные задачи, требуя от них по-новому адаптировать свои стратегии и основные направления деятельности исходя из всё более усложняющихся взаимосвязей отрасли с другими секторами экономики и социально-экономическим развитием в целом (рис. 6).
Источник: [16]. Рис. 6. Взаимосвязи нефтегазовой отрасли в энергетики будущего
Таким образом, концепция энергетического перехода, накладывая существенные ограничения и создавая дополнительные риски для развития нефтяной отрасли, оставляет более широкие возможности для газовой промышленности.
Как уже было отмечено выше, потребление углеводородов не рухнет в одночасье и ещё достаточно долго, по крайней мере, до 2035-2040 гг., нефть и природный газ сохранят свою роль в формировании мирового энергобаланса как одних из основных энергоресурсов. Но происходить это будет на фоне ожидающегося системного кризиса, который охватит как саму экономику и энергетику, так и политику, включая международные отношения, в условиях высокой степени неопределённости практически каждого составного элемента, из которых складывается общая картина энергетики будущего [17].
Следует также учитывать, что изменения в глобальном балансе между спросом и предложением на нефть и газ окажут существенное влияние как на будущий энергетический ландшафт и формирование всей энергетической карты мира, так и на геополитику в целом, что, в свою очередь, скажется на функционировании энергетических рынков. В частности, как отмечают эксперты ВЭФ, международные усилия по принятию политики, направленной на смягчение последствий использования ископаемых видов топлива, создают геополитические проблемы не только для богатых нефтью и газом стран, но и для развивающихся экономик, в которых спрос на энергию будет продолжать расти наряду с ростом индустриализации [16].
В полной мере сказанное относится и к России, к её нефтегазовым компаниям, тем более что энергетический переход – это не только вызовы, но и новые возможности, особенно для газовой отрасли. Исследования, проведенные ИПНГ РАН, свидетельствуют, что в настоящее время Россия не имеет сдерживающих факторов в плане добычи газа со стороны ресурсно-сырьевой базы. Перспективные уровни производства будут определяться только потребностями основных энергетических и газовых рынков в Европе и странах АТР, а также внутренним спросом на газовое топливо. Поэтому, располагая уникальными по качеству ресурсами и возможностями, Россия вполне справедливо может претендовать на роль ведущей мировой газовой державы и крупнейшего экспортёра как трубопроводного, так и сжиженного газа, внося, тем самым, свой ощутимый вклад в решение глобальных проблем энергетического переходного периода.
Статья подготовлена по результатам работ, выполненных в рамках Программы государственных академий наук на 2013 — 2020 годы. Раздел 9 «Науки о Земле»; направления фундаментальных исследований: 131. «Геология месторождений углеводородного сырья, фундаментальные проблемы геологии и геохимии нефти и газа, научные основы формирования сырьевой базы традиционных и нетрадиционных источников углеводородного сырья» и 132 «Комплексное освоение и сохранение недр Земли, инновационные процессы разработки месторождений полезных ископаемых и глубокой переработки минерального сырья», в рамках государственного задания по темам «Фундаментальный базис инновационных технологий нефтяной и газовой промышленности», № АААА-А16-116031750016-3.
_______________
1 Алексей Михайлович Мастепанов – д-р экон. наук, профессор Российского государственного университета нефти и газа (национального исследовательского университета) имени И.М. Губкина, академик РАЕН, руководитель Аналитического центра энергетической политики и безопасности ИПНГ РАН, член Совета директоров Института энергетической стратегии, г. Москва; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
2 В связи с этим энергетический переход иногда называют декарбонизацией энергетической системы.
3 Включая доступ к энергии, качество воздуха и климатические цели.
4 См., напр., [12].
5 Без учёта энергоресурсов, расходуемых на нетопливные нужды.
Использованные источники и литература
- Top 10 Emerging Technologies 2019. Insight Report. World Economic Forum, June 2019. – URL: http://www3.weforum.org/docs/WEF_Top_10_Emerging_Technologies_2019_Report.pdf
- Future of Energy. Global Issue. Co-curated with: Massachusetts Institute of Technology – URL: https://intelligence.weforum.org/topics/a1Gb00000038oN6EAI?tab=publications
- Global Energy Transformation: A roadmap to 2050. International Renewable Energy Agency, 2018. 76 Р. – URL: https://www.irena.org/publications/2018/Apr/Global-Energy-Transition-A-Roadmap-to-2050
- Energy Technology Perspectives 2017. Catalysing Energy Technology Transformations. International Energy Agency, OECD/IEA, 2017. 443 р.
- Сидорович В. Куда в энергетике ветер дует – URL: duet?utm_campaign=newspaper_16_7_2019&utm_medium=email&utm_source=vedomosti
- Мастепанов А.М. Глобализация и устойчивое развитие – новые вызовы и новые возможности// Энергетическая политика. 2012, Выпуск 3, стр. 12-16
- Мастепанов А.М. Климат ориентированные сценарии в прогнозах Международного энергетического агентства // Экологический вестник России. 2017, №6, с. 4-1
- World Energy Outlook 2018. OECD/IEA, 2018. 645/661 pages // Сайт IEA – URL:
- International Energy Outlook 2018 (IEO2018). Presentation// Сайт EIA – URL:
- Organization of the Petroleum Exporting Countries. 2018 OPEC World Oil Outlook. September 2018. 394/412 pages // Сайт OPEC – URL: http://www.opec.org.
- BP Energy Outlook 2019 edition – URL: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf
- 2017 Future Consensus Forum /Сборник материалов к Форуму/. Future Consensus Institute, 2017 – 243 p.
- Perspectives for the Energy Transition: Investment needs for a low-carbon energy system (OECD/IEA and IRENA 2017). 204 pages // Сайт IRENA – URL: https://www.irena.org/publications/2017/Mar/Perspectives-for-the-energy-transition-Investment-needs-for-a-low-carbon-energy-system
- Energy Transition Outlook 2018. A global and regional forecast to 2050. 324 pages // Сайт DNV GL – URL: https://eto.dnvgl.com/2018/#Energy-Transition-Outlook-2018
- Global Energy Transformation: A roadmap to 2050 (2019 edition). International Renewable Energy Agency, 2019. 52 Р. – URL: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019 Edition
- Oil and Gas Industry. Co-curated with: James A. Baker III Institute for Public Policy, Rice University – URL:
- Мастепанов А.М. Нефть в перспективном мировом энергетическом балансе: на перепутье мнений и оценок // Проблемы экономики и управления нефтегазовым комплексом. Научно-экономич. журнал. 2019, № 4 (172), с. 5-8